Skip to content
Starts With A Bang

What Was It Like When The Big Bang First Began?

Sign up for Smart Faster newsletter
The most counterintuitive, surprising, and impactful new stories delivered to your inbox every Thursday.

13.8 billion years ago, our Universe as-we-know-it came into existence. Here’s what it was like.


Looking out at our Universe today, we not only see a huge variety of stars and galaxies both nearby and far away, we also see a curious relationship: the farther away a distant galaxy is, the faster it appears to move away from us. In cosmic terms, the Universe is expanding, with all the galaxies and clusters of galaxies getting more distant from one another over time. In the past, therefore, the Universe was hotter, denser, and everything in it was closer together.

If we extrapolate back as far as possible, we’d come to a time before the first galaxies formed; before the first stars ignited; before neutral atoms or atomic nuclei or even stable matter could exist. The earliest moment at which we can describe our Universe at hot, dense, and uniformly full-of-stuff is known as the Big Bang. Here’s how it first began.

If you look farther and farther away, you also look farther and farther into the past. The earlier you go, the hotter and denser, as well as less-evolved, the Universe turns out to be. The earliest signals can even, potentially, tell us about what happened prior to the moments of the hot Big Bang. (NASA / STScI / A. Feild (STScI))

Some of you are going to read that last sentence and be confused. You might ask, “isn’t the Big Bang the birth of time and space?” Sure; that’s how it was originally conceived. Take something that’s expanding and of a certain size and age today, and you can go back to a time where it was arbitrarily small and dense. When you get down to a single point, you’ll create a singularity: the birth of space and time.

Only, there’s a ton of evidence that points to a non-singular origin to our Universe. We never achieved those arbitrarily high temperatures; there’s a cutoff. Instead, our Universe is best described by an inflationary period that occurred prior to the Big Bang, and the Big Bang is the aftermath of what occurred at the end of inflation. Let’s walk through what that looked like.

An illustration of the early Universe as consisting of quantum foam, where quantum fluctuations are large, varied, and important on the smallest of scales. During inflation, these fluctuations get stretched across all scales in the Universe, reaching arbitrarily larger ones over time. (NASA/CXC/M.Weiss)

During inflation, the Universe is completely empty. There are no particles, no matter, no photons; just empty space itself. That empty space has a huge amount of energy in it, with the exact amount of energy slightly fluctuating over time. Those fluctuations get stretched to larger scales, while new, small-scale fluctuations are created on top of that. (We described what the Universe looked like during inflation previously.)

This continues as long as inflation goes on. But inflation will come to an end randomly, and not in all locations at once. In fact, if you lived in an inflating Universe, you’d likely experience a nearby region have inflation come to an end, while the space between you and it expanded exponentially. For a brief instant, you’d see what happens at the start of a Big Bang before that region disappeared from view.

In an inflating Universe, the grid-like space you would visualize has tiny quantum fluctuations superimposed atop of it, but is uniform and non-descript, simply expanding exponentially. When inflation ends, there should be a brief ‘window’ into a new Universe where the hot Big Bang takes place. (Pixabay user JohnsonMartin)

In an initially, relatively small region, perhaps no bigger than a soccer ball but perhaps much larger, the energy inherent to space gets converted into matter and radiation. The conversion process is relatively fast, taking approximately 10^-33 seconds or so, but not instantaneous. As the energy bound up in space itself gets converted into particles, antiparticles, photons and more, the temperature starts to rapidly rise.

Because the amount of energy that gets converted is so large, everything will be moving close to the speed of light. They will all behave as radiation, whether the particles are massless or massive doesn’t matter. This conversion process is known as reheating, and signifies when inflation comes to an end and the stage known as the hot Big Bang begins.

The analogy of a ball sliding over a high surface is when inflation persists, while the structure crumbling and releasing energy represents the conversion of energy into particles. (E. Siegel)

In terms of the expansion speed, you’ll witness a tremendous change. In an inflationary Universe, space expands exponentially, with more distant regions accelerating away as time goes on. But when inflation ends, the Universe reheats, and the hot Big Bang starts, more distant regions will recede from you more slowly as time goes on. From an outside perspective, the part of the Universe where inflation ends sees the expansion rate there drop, while the inflating regions surrounding it see no such drop.

High-energy collisions of particles can create matter-antimatter pairs or photons, while matter-antimatter pairs annihilate to produce photons as well. Immediately after inflation ends, the Universe is filled with particles, antiparticles, and photons, which interact, annihilate, produce new particles, all as the Universe expands and cools. (Brookhaven National Laboratory / RHIC)

Probability-wise, it’s extremely likely that from the perspective of whatever region of inflating space you’re in prior to the Big Bang, you’ll see inflation end in nearby regions many times. These locations where inflation ends will quickly fill with matter, antimatter, and radiation, and expand more slowly than the still-inflating regions do.

These regions will expand away from all the other locations where inflation still goes on exponentially, meaning they will very quickly recede from view. In the standard inflationary picture, because of this expansion rate change, there’s virtually no chance that any two Universes, where separate hot Big Bangs occur, will ever collide or interact.

An illustration of multiple, independent Universes, causally disconnected from one another in an ever-expanding cosmic ocean, is one depiction of the Multiverse idea. In a region where the Big Bang begins and inflation ends, the expansion rate will drop, while inflation continues in between two such regions, forever separating them.(Ozytive / Public domain)

Finally, the region where we will come to live gets cosmically lucky, and inflation comes to an end for us. The energy that was inherent to space itself gets converted to a hot, dense, and almost uniform sea of particles. The only imperfections, and the only departures from uniformity, correspond to the quantum fluctuations that existed (and were stretched across the Universe) during inflation. The positive fluctuations correspond to initially overdense regions, while the negative fluctuations get converted into initially underdense regions.

The overdense, average density, and underdense regions that existed when the Universe was just 380,000 years old now correspond to cold, average, and hot spots in the CMB. (E. Siegel / Beyond The Galaxy)

We cannot observe these density fluctuations, today, as they were when the Universe first underwent the hot Big Bang. There are no visual signatures we can access from that early on; the first one we’ve ever accessed come from 380,000 years later, after they’ve undergone countless interactions. Even at that, we can extrapolate back what the initial density fluctuations were, and find something extremely consistent with the story of cosmic inflation. The temperature fluctuations that are imprinted on the first picture of the Universe — the cosmic microwave background — gives us confirmation of how the Big Bang began.

The final prediction of cosmic inflation is the existence of primordial gravitational waves. It is the only one of inflation’s predictions to not be verified by observation… yet. (National Science Foundation (NASA, JPL, Keck Foundation, Moore Foundation, related) — Funded BICEP2 Program; modifications by E. Siegel)

What might be observable to us, however, are the gravitational waves left over from the end of inflation and the start of the hot Big Bang. The gravitational waves that inflation generates move at the speed of light in all directions, but unlike the visual signatures, no interactions can slow them down. They will arrive continuously, from all directions, passing through our bodies and our detectors. All we need to do, if we want to understand how our Universe got its start, is find a way to observe these waves either directly or indirectly. While many ideas and experiments abound, none have returned a successful detection so far.

The quantum fluctuations that occur during inflation get stretched across the Universe, and when inflation ends, they become density fluctuations. This leads, over time, to the large-scale structure in the Universe today, as well as the fluctuations in temperature observed in the CMB. (E. Siegel, with images derived from ESA/Planck and the DoE/NASA/ NSF interagency task force on CMB research)

Once inflation comes to an end, and all the energy that was inherent to space itself gets converted into particles, antiparticles, photons, etc., all the Universe can do is expand and cool. Everything smashes into one another, sometimes creating new particle/antiparticle pairs, sometimes annihilating pairs back into photons or other particles, but always dropping in energy as the Universe expands.

The Universe never reaches infinitely high temperatures or densities, but still attains energies that are perhaps a trillion times greater than anything the LHC can ever produce. The tiny seed overdensities and underdensities will eventually grow into the cosmic web of stars and galaxies that exist today. 13.8 billion years ago, the Universe as-we-know-it had its beginning. The rest is our cosmic history.


Ethan Siegel is the author of Beyond the Galaxy and Treknology. You can pre-order his third book, currently in development: the Encyclopaedia Cosmologica.
Sign up for Smart Faster newsletter
The most counterintuitive, surprising, and impactful new stories delivered to your inbox every Thursday.

Related

Up Next