Skip to content
Starts With A Bang

This 90-year-old math problem shows why we need quantum computers

To find the optimal route between many different locations, we need the power of quantum computers.

It’s time to run your errands, and you’ve got multiple stops to make. From your house, you have to hit the supermarket, the gas station, and the hardware store, all before returning home. Assuming you know that you begin and end at your home, there are six possible routes you can take, as you can either hit:

  • first the supermarket, next the gas station, and then the hardware store,
  • first the supermarket, next the hardware store, and then the gas station,
  • first the gas station, next the supermarket, and then the hardware store,
  • first the gas station, next the hardware store, and then the supermarket,
  • first the hardware store, next the supermarket, and then the gas station, or
  • first the hardware store, next the gas station, and then the supermarket.

But which one of these routes will be the most efficient path? This is known, in the field of mathematics, as the traveling salesman problem. To solve it for more than a handful of “stops,” it will almost certainly require a quantum computer. Here’s why.

For the ‘travelling salesman problem,’ a very large number of possible solutions exist, representing all the possible combinations of routes linking up a set number of points. For more than just a few destinations, the number of possible solutions to consider increases too quickly for a brute force approach to be effective. (SAURABH.HARSH / WIKIMEDIA COMMONS)

If you have any number of destinations that you have to visit, there will be one travel route that’s more efficient than all the rest: that wastes the least amount of time and distance travelling between them. The above example — about your home, the supermarket, the gas station, and the hardware store — had a total of four destinations, but only six possible paths. As it turns out, only three of those paths are unique, because each option (e.g., home ⇨ supermarket ⇨ gas station ⇨ hardware store ⇨ home) is one of the other options in reverse (e.g., home ⇨ hardware store ⇨ gas station ⇨ supermarket ⇨ home).

This is pretty straightforward for only a few stops, but the number of possible paths grows extremely rapidly: like a mathematical factorial. For 5 destinations, there are 12 possible unique paths; for 10 destinations, there are 181,400 unique paths; for 15 destinations, there are over 43 billion unique paths.

If the computation of each path were to take one microsecond in the travelling salesman problem, then trying to solve the problem using brute force becomes practically impossible beyond perhaps 12-to-15 total destinations. (MARK JACKSON / CAMBRIDGE QUANTUM COMPUTING)

The simplest approach to solving this type of problem is to use what we call “brute force.” The brute force approach would simply take possible way to travel between however many destinations you had, calculate the distance of that path, and to determine which one was the shortest. The problem is that the number of possible outcomes — or the number of “tours” for the travelling salesman — rises incredibly quickly.

For any number of total destinations, call it N, the number of possible tours is (N-1)!/2. If you only had 5 destinations, it wouldn’t take that long to calculate the distances for all 12 possible tours; a typical modern computer takes about a microsecond to calculate one tour. But if you went up to 10 destinations, it would take almost a full second. At 15 destinations, it takes about half a day, and for 20 destinations, it would take about 2,000 years. By the time you reach 25 destinations, you’d have to run your computer for about 10 billion years to optimize your path: about as long as the age of the Universe.

IBM’s Four Qubit Square Circuit, a pioneering advance in computations, could someday lead to quantum computers powerful enough to simulate an entire Universe. But the field of quantum computation is still in its infancy, and quantum supremacy has yet to be achieved for problems with practical applications. (IBM RESEARCH)

This problem — like many problems one can formulate — belongs to a class of problems that are classified as computationally expensive. To find the optimal solution among a myriad of possible combinations requires examining every reasonable path that one could imagine taking, quantifying the distance (or time) requires for that path, and then choosing the shortest (or fastest) one.

In practice, the brute force approach isn’t the only one, and superior methods for finding exact solutions (largely by ruling out “obviously non-optimal” paths) exist, similar to advances made in computer chess. The largest exact solution was achieved in 2006, when the shortest path through 85,900 cities was found. It took over a century’s worth of CPU-years to find that solution.

The travelling salesman problem as applied to ants in an ant colony. The ants initially lay down a path (1) but wind up exploring a myriad of possible interconnected paths (2) over time. Eventually, the majority of ants follow the most efficient solution (3), laying down a pheromone trail that all ants eventually wind up following (4). (NOJHAN / WIKIMEDIA COMMONS)

This type of problem, despite its simplicity, actually has a large number of practical applications. (And no, not only for people named Santa Claus.) If you have a series of packages going to a series of addresses, you’ll want to take the optimal route. If you’re planning out your travelling route, from errand trips to road trips, you won’t want to waste time or mileage. And if you’re in the airline industry, the manufacturing industry, or the transportation industry, you’ll want to get your passengers and cargo to their destination as quickly and efficiently as possible.

But if your problem is too complex — if you have too many destinations, for example — you’ll only ever be able to come up with approximate solutions; you cannot be certain that you found the best route, or even one of the best routes. The solution you arrive at will be limited by your computational power and the quality of your algorithm. Some problems, quite simply, are hard to solve with classical computers.

A 9-qubit quantum circuit, as micrographed out and labeled. Gray regions are aluminum, dark regions are where the aluminum is etched away, and colors have been added to distinguish the various circuit elements. For a computer like this, which uses superconducting qubits, the device must be kept supercooled at millikelvin temperatures to work as a true quantum computer, and operates appropriately only on timescales significantly below ~50 microseconds. (C. NEILL ET AL. (2017), ARXIV:1709.06678V1, QUANT-PH)

Fortunately, many computationally difficult problems — including, quite possibly, some aspects of the travelling salesman problem — are far less difficult (and far less computationally expensive) using a quantum computer. It was proven, just a few years ago, that quantum computers possess a computational advantage over anything a classical computer could ever achieve.

When quantum supremacy was achieved for the first time in 2019 (albeit only for a specific problem), it was a stunning example of how quantum computers could practically solve problems faster and more efficiently than conventional, classical computers ever could. While it’s always possible that new algorithms or methods could lead to a faster solution for any particular problem on a classical computer, quantum computers maintain some fundamental advantages.

When you perform an experiment on a qubit state that starts off as |10100> and you pass it through 10 coupler pulses (i.e., quantum operations), you won’t get a flat distribution with equal probabilities for each of the 10 possible outcomes. Instead, some outcomes will have abnormally high probabilities and some will have very low ones. Measuring the outcome of a quantum computer can determine whether you are maintaining the expected quantum behavior or losing it in your experiment. (C. NEILL ET AL. (2017), ARXIV:1709.06678V1, QUANT-PH)

Instead of bits that must be either 0 or 1, they work with indeterminate qubit states that exist in superpositions of 0 and 1 simultaneously. Moreover, you can also perform quantum operations (rather than just the classical ones) on these qubits directly, maintaining all of that quantum weirdness (including indeterminism) all the way up through the very end of the computation.

This is where the true power of quantum computing lies: in taking advantage of the fact that some problems can be solved efficiently using a quantum computer, but classical computers can only solve them inefficiently. This was proven in 2018 by computer scientists Ran Raz and Avishay Tal, who demonstrated that quantum computers can efficiently solve problems that:

  • are not quickly solvable by a classical computer,
  • cannot have their solutions quickly checked by a classical computer,
  • and do not fall into the generalized category of all problems that classical computers could theoretically solve in polynomial time.
Shown here is one component of a quantum computer (a dilution refrigerator), as shown here in a clean room from a 2016 photo. Quantum computers would achieve Quantum Supremacy if they could complete any calculation significantly more quickly and efficiently than a classical computer can. That achievement won’t, on its own, however, let us achieve all of the dreams we have of what Quantum Computation could bring to humanity. (GETTY IMAGES)

This brings us back to the travelling salesman problem. It’s not a problem that’s quickly solvable by a classical computer, even with the best algorithms ever devised. If you were given a specific distance, you could easily check whether any path that you found is shorter than that distance or not, but there’s no guarantee that’s the shortest distance of all.

But really, that’s what you want to know: is the shortest possible path exactly equal to the specific distance covered by the shortest path you’ve found?

Perhaps someday, even if it hasn’t happened in all the time this problem has been examined, we’ll be able to discover an algorithm for a classical computer that can efficiently find that solution. It’s not guaranteed that such an algorithm exists, but the quest to discover one remains the hope of many.

Brute force approaches are inadequate for solving a traveling salesman problem with too many nodes, as the 35-node path here illustrates. However, other algorithms exist that allow candidate solutions to be found, which can then be checked for ‘shortness’ below a certain threshold. (XYPRON / PUBLIC DOMAIN)

Irrespective of whether that specific problem — or the generalization of all such theoretical problems — eventually yields to a classical computer or not, however, there will still remain problems that go beyond the limits of what a classical computer could ever efficiently do. There are problems that we can pose that have a “yes” or “no” answer, but that aren’t solvable in polynomial time by a classical computer, even theoretically.

However, at least some of those problems, even the ones that cannot be efficiently solved by a classical computer, can be efficiently solved by a quantum computer. Although we do not know if the traveling salesman problem will ever be efficiently solvable by a classical computer, we do know that there are categories of problems that quantum computers can efficiently solve that classical ones cannot. If a classical solution exists, then a quantum one does too; but even if a classical solution doesn’t exist, a quantum one may yet be possible.

Controlling even a single qubit and maintaining its quantum state over long timescales is a challenge for all approaches to quantum computing. Here, a single qubit is shown being controlled by electrical plasma. Most qubits are typically controlled by a magnetic field, but this one is controlled by selective electrical pulses. (GETTY)

Finding the most efficient route between a large number of nodes — the essence of the travelling salesman problem — has a myriad of practical applications. It shows up in DNA sequencing. It appears in the planning and manufacture of microchips. It rears its head in planning observing runs of many objects in astronomy. And it’s essential in optimizing delivery routes and supply-chain logistics. But for all its importance and relevance in human society, we do not yet know how to solve the problem efficiently: in what computer scientists call polynomial time.

Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!

Even if no such solution exists, and it might not with a classical computer, the world of quantum computers offers unparalleled hope. A quantum computer can solve classes of problems that no classical computer can efficiently solve, and perhaps that will someday include the travelling salesman problem. When your brute force options are too expensive and an efficient algorithm eludes you, don’t give up on ever solving the problem altogether. The quantum computing revolution might yet make it possible.

Ethan Siegel is the author of Beyond the Galaxy and Treknology. You can pre-order his third book, currently in development: the Encyclopaedia Cosmologica.


Up Next